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Decision: adaptively evaluate a set of points
max
()*+,-

	 𝔼 max
./%,&,…,'

𝑓(𝑥.) 𝑥%, 𝑥&, … , 𝑥' ∈ 𝒳
Objective: optimize best observed value at time 𝑇

An unknown random 
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drawn from a Gaussian 
process prior

𝑇: time budget

Goal: optimize expensive-to-
evaluate black-box function 

Applications:
Hyperparameter tuning
Drug discovery
Control design
𝑥: hyperparameter/configuration
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Continuous search domain

Correlated values

𝑥"

𝑥#𝑥!

𝑥$

𝑡 = 1

𝑡 = 2

𝑡 = 3

𝑡 = 4

⋮

𝑡 = 𝑇

⟹ Optimal policy unknown!

Hard budget constraint
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budget
max best observed
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⟹
Lagrangian relaxation

costsbudget
max (best observed – costs)max best observed

⋯ ⋯ ⋯ ⋯ ⋯ ⋯
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Special case of Markovian/ 
Bayesian multi-armed bandits

[Weitzman’79]
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Our work Pandora’s Box Gittins index⟸

How is our PBGI policy different from baselines?

⋯ ⋯ ⋯
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Expected improvement

𝑦%&'(: current best observed value

Trade-off between 
• exploitation (high mean) and 
• exploration (high uncertainty)

variance: confidence/uncertainty
mean: prediction

EI2|4(𝑥; 𝑦) = 𝔼[ (𝑓|𝐷) 𝑥 − 𝑦 5]
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Expected improvement

Other heuristics:
• Upper Confidence Bound
• Thompson Sampling (TS)
• Predictive Entropy Search
• Knowledge Gradient
• Multi-step Lookahead EI

EI2|4(𝑥; 𝑦) = 𝔼[ (𝑓|𝐷) 𝑥 − 𝑦 5]
EI policy: evaluate argmax"EI2|4(𝑥; 𝑦6789)

𝑦%&'(: current best observed value

Trade-off between 
• exploitation (high mean) and 
• exploration (high uncertainty)

variance: confidence/uncertainty
mean: prediction

simple

slow

𝐷: observed data
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Pandora’s box Gittins index

Pandora’s boxOther heuristics:
• Upper Confidence Bound
• Thompson Sampling (TS)
• Knowledge Gradient
• Predictive Entropy Search
• Multi-step Lookahead EI

PBGI policy: evaluate argmax"	𝛼∗(𝑥)
𝛼∗(𝑥): Gittins index function
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λ λ λ

PBGI policy: evaluate argmax"	𝛼∗(𝑥)
𝛼∗(𝑥): solution to EI*|, 𝑥; 𝛼∗(𝑥) = λ

λ: cost-per-sample 
(Lagrange multiplier)

Other heuristics:
• Upper Confidence Bound
• Thompson Sampling (TS)
• Knowledge Gradient
• Predictive Entropy Search
• Multi-step Lookahead EI

Pandora’s box

Pandora’s box Gittins index
EI2|4(𝑥; 𝑦) = 𝔼[ (𝑓|𝐷) 𝑥 − 𝑦 5]

𝐷: observed data



Experiment Results: PBGI vs EI vs TS
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Synthetic

Empirical

PBGI
EI
TS

(16d) (16d)

(12d)(25d)
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Our work Pandora’s box Gittins index⟸
Check our preprint on arXiv!

⋯ ⋯ ⋯
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particularly on medium-high dimensions and relatively-large domains!

Check our preprint on arXiv!

⋯ ⋯ ⋯
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𝑐(𝑥:)

Check our preprint on arXiv!

𝑐(𝑥)

𝑓(𝑥)

costs

budget

⋯ ⋯ ⋯

𝑐(𝑥&)𝑐(𝑥%)𝑐(𝑥;)
𝑥!

𝑥"
𝑥#

𝑥$

max (best observed – costs)



Heterogeneous-cost Experiment Results

• Show the effectiveness of PBGI on synthetic & empirical experiments
• Extend to Bayesian optimization with heterogeneous evaluation costs
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PBGI
EI
TS

EIPC

Check our preprint on arXiv!



Conclusions

• Propose easy-to-compute PBGI policy for Bayesian optimization
• Show the effectiveness of PBGI on synthetic & empirical experiments
• Extend to Bayesian optimization with heterogeneous evaluation costs
• Open door for complex BO (freeze-thaw, multi-fidelity, function network, etc.)
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